

Co-funded by the Erasmus+ Programme of the European Union

10. Drop explosion

10. Výbuch kvapky

Tomáš Roch Faculty of Mathematics Physics and Informatics Comenius University in Bratislava

35th IYPT 2022

10. Droplet Explosion

When a drop of a water mixture (e.g. water-alcohol) is deposited on the surface of a hydrophobic liquid (e.g. vegetable oil), the resulting drop may sometimes fragment into smaller droplets. Investigate the parameters that affect the fragmentation and the size of the final droplets.

Phys. Rev. Fluids **3**, 100501 (2018) https://doi.org/10.1103/PhysRevFluids.3.100501 Entry #V0020

Marangoni Bursting: Evaporation-Induced Emulsification of a Two-Component Droplet

Guillaume Durey¹, Hoon Kwon¹, Julien Mazet², Quentin Magdelaine¹, Mathias Kasiulis¹, Ludovic Keiser³, Hadrien Bense³, Pierre Colinet⁴, José Bico³, Étienne Reyssat³

1 The Lutetium Project, ESPCI Paris, PSL Research University, youtube.com/thelutetiumproject 2 Conservatoire National Supérieur de Musique et de Danse de Paris, PSL Research University 3 Laboratoire PMMH, CNRS, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Diderot 4 Transferts, Interfaces et Procédés, Université Libre de Bruxelles

https://en.wikipedia.org/wiki/Surface_tension

Plateau–Rayleigh instability

Fluid stream breaks up into smaller drops with less surface area

Hydrophobicity $\gamma > 90^{\circ}$

 $\gamma_{SG} = \gamma_{SL} + \gamma_{LG} \cos \theta$ θ - contact angle

Young – Laplace equation

$$\Delta p = \gamma \left(rac{1}{R_x} + rac{1}{R_y}
ight)$$

 Δp – Laplace pressure R_{x,y} – radii of curvature of surface

Marangoni effect/flow

The mass transfer along an interface between two fluids due to a gradient of the surface tension. The surface tension gradient can be caused by concentration gradient or by a temperature gradient. Liquid with a high surface tension pulls more strongly on the surrounding liquid

Keiser, L., Bense, H., Colinet, P., Bico, J., Reyssat, E., 2017. Marangoni Bursting: Evaporation-Induced Emulsification of Binary Mixtures on a Liquid Layer. Physical Review Letters 118.. doi:10.1103/physrevlett.118.074504

Keiser, L., Bense, H., Colinet, P., Bico, J., Reyssat, E., 2017. Marangoni Bursting: Evaporation-Induced Emulsification of Binary Mixtures on a Liquid Layer. Physical Review Letters 118.. doi:10.1103/physrevlett.118.074504

characteristic radius and time scale

$$R^* \sim \left(\frac{(\phi_0 - \phi_c)\Delta\gamma H\Omega_0}{(1 - \phi_c)\eta_o j_v}\right)^{1/4}$$

$$\tau \sim \left(\frac{(\phi_0 - \phi_c)\eta_o \Omega_0}{(1 - \phi_c)\Delta\gamma H j_v}\right)^{1/2}$$

- ϕ_0 Initial alcohol concentration
- *H* Maximum droplet thickness
- Ω_0 Initial volume
- γ Effective tension
- η_o Viscocity constant
- $\hat{J}v$ Evaporation constant
- ϕ_c Critical concentration (0.35+/-0.2)

Keiser, L., Bense, H., Colinet, P., Bico, J., Reyssat, E., 2017. Marangoni Bursting: Evaporation-Induced Emulsification of Binary Mixtures on a Liquid Layer. Physical Review Letters 118.. doi:10.1103/physrevlett.118.074504

Test sample	Density ρ (kg/m ³)	Dynamic viscosity ν (mm ² /s)	Surface tension σ (mN/m)
Water ³²	997	0.89	72
Ethanol ³²	785	1.37	22
IPA ³²	781	2.61	21
Sunflower oil	916	58	32 (Ref. 21)
Silicone oil ³³ (1000 cSt)	970	1000	21

Capillary length of liquid-liquid (IPA-oil) interface:

$$\lambda_c \sim \sqrt{\frac{\gamma_{so}}{(\rho_o - \rho_s)g}},$$

Final droplets size distribution

Fragmentation period 0.65 .. 2.2mm

~ 1.5 mm (for γ_{SO} = 3 mN/m, ρ_o =9.16g/cm³ ρ_a =7.81g/cm³, g=9.81m/s².

[K.Hasegawa, Y. Manzaki, Phys. Fluids **33**, 034124 (2021); https://doi.org/10.1063/5.0041346]

Experimental parameters

Initial concentration of alcohol in water solution ϕ_0 Temperature (room, elevated 90°C) Initial drop size

Experimental setup

Flat and wide Petri dish – oil level few mm Pipete for droplet injection Cell phone with suitable camera resolution For higher alcohol content and resulting small drops microscope optics or magnifying lens needed Desinfection alcohol, IPA, ethanol, + food color, (red wine) For better visualization and tracking of the fluid movement use some fine particle powder deposit on the drop surface

SW: ImageJ – for droplets analysis: <u>https://imagej.nih.gov/ij/</u> <u>https://imagej.nih.gov/ij/docs/pdfs/examples.pdf</u> <u>https://physlets.org/tracker/</u>

https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.3.100501

https://www.youtube.com/watch?v=y44rQdiixuw

https://www.researchgate.net/publication/313835093_Marangoni_Bursting_Evaporation-Induced_Emulsification_of_Binary_Mixtures_on_a_Liquid_Layer